995 resultados para Enzyme Stability


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Boron nitride nanotubes were functionalized by microperoxidase-11 in aqueous media, showing improved catalytic performance due to a strong electron coupling 10 between the active centre of microperoxidase-11 and boron nitride nanotubes. One main application challenge of enzymes as biocatalysts is molecular aggregation in the aqueous solution. This issue is addressed by immobilization of enzymes on solid supports which 15 can enhance enzyme stability and facilitate separation, and recovery for reuse while maintaining catalytic activity and selectivity. The protein-nanoparticle interactions play a key role in bio-nanotechnology and emerge with the development of nanoparticle-protein “corona”. Bio-molecular coronas provide a 20 unique biological identity of nanosized materials.1, 2 As a structural analogue to carbon nanotubes (CNTs), Boron nitride nanotubes have boron and nitrogen atoms distributed equally in hexagonal rings and exhibit excellent mechanical strength, unique physical properties, and chemical stability at high-temperatures. 25 The chemical inertness of BN materials suits to work in hazardous environments, making them an optimal candidate in practical applications in biological and medical field.3, 4

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gemcitabine is indicated in combination with cisplatin as first-line therapy for solid tumours including non-small cell lung cancer (NSCLC), bladder cancer and mesothelioma. Gemcitabine is an analogue of pyrimidine cytosine and functions as an anti-metabolite. Structurally, however, gemcitabine has similarities to 5-aza-2-deoxycytidine (decitabine/Dacogen®), a DNA methyltransferase inhibitor (DNMTi). NSCLC, mesothelioma and prostate cancer cell lines were treated with decitabine and gemcitabine. Reactivation of epigenetically silenced genes was examined by RT-PCR/qPCR. DNA methyltransferase activity in nuclear extracts and recombinant proteins was measured using a DNA methyltransferase assay, and alterations in DNA methylation status were examined using methylation-specific PCR (MS-PCR) and pyrosequencing. We observe a reactivation of several epigenetically silenced genes including GSTP1, IGFBP3 and RASSF1A. Gemcitabine functionally inhibited DNA methyltransferase activity in both nuclear extracts and recombinant proteins. Gemcitabine dramatically destabilised DNMT1 protein. However, DNA CpG methylation was for the most part unaffected by gemcitabine. In conclusion, gemcitabine both inhibits and destabilises DNA methyltransferases and reactivates epigenetically silenced genes having activity equivalent to decitabine at concentrations significantly lower than those achieved in the treatment of patients with solid tumours. This property may contribute to the anticancer activity of gemcitabine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

目前对PVA生物降解研究重点逐渐转移到对PVA降解菌和PVA降解酶的研究开发上,随着对PVA降解高效新菌株的不断发现和PVA降解酶作用机理和分泌机制的深入了解,利用高效微生物或酶法治理PVA这类高聚物的污染将具有较大的应用潜力。本论文研究工作正是基于这种客观条件下进行的,对本实验室前期分离的PVA降解菌株P1、共生菌B1+B2、Pa、Pb为研究对象,重点研究了菌株P1和共生菌B1+B2的产酶条件和产酶特性,验证找出了影响菌株P1产酶的生长因子,论证了菌株B1+B2的产酶特性,优化得出了菌株B1+B2的最佳产酶条件;然后对共生菌B1+B2的PVA降解酶的稳定性进行了研究;最后研究了最佳组合菌的产酶特性和最佳产酶条件。主要研究结果如下: 1 通过对菌株P1产酶因子的研究,找出了核黄素是菌株P1产酶的必须因子,在以淀粉为碳源时,核黄素只是产酶的必须因子,而不是菌体生长的必须因子;在以PVA为碳源时,核黄素既是生长的必须因子,也是产酶的必须因子,是菌株P1的生长因子。 2 对共生菌B1+B2的产酶条件和产酶特性进行了研究,并通过正交实验找出了影响菌株产酶的主要条件和菌株产酶的最佳条件。 3 对共生菌PVA降解酶的稳定性进行了研究,确定了影响酶稳定性的主要理化条件。 4 通过对菌株降解性能的比较,确定菌株Pa、Pb、共生菌、P1的作为组合菌的组成菌,然后通过复配实验确定出菌株的最佳组合为菌株Pa、P1、共生菌,最后通过正交实验确定最佳组合菌的最佳配比。 5对影响组合菌产酶的因素进行了研究,通过正交实验确定了影响组合菌产酶的主要因素和最佳产酶条件。 本文通过对PVA降解菌株产酶条件和特性的研究,旨在为PVA降解菌生产酶制剂及进一步优化PVA降解菌在PVA废水治理中的应用提供理论和应用依据。 Now the PVA-degrading bacteria and polyvinyl alcohol-degrading enzyme are the key studies on the PVA biological degradation. It has great application potential using special bacteria and enzyme to treat pollution of PVA, with some high efficient Strain and enzyme were found. The study of this paper was based on that objective condition. The stain P1, symbiotic bacteria B1+B2, stain Pa and strain Pb were studied .The conditions of enzyme production and enzyme production characteristic of stain P1, symbiotic bacteria B1+B2 were our key study, we tested and verified the growth factor which effected enzyme production of strain P1, demonstrated enzyme production characteristic of symbiotic bacteria B1+B2, optimized and obtained the optimum conditions of enzyme production; then we studied the stability of polyvinyl alcohol-degrading enzyme of strain B1+B2; last the enzyme characteristic and the optimum conditions of alcohol-degrading enzyme production of optimum combination stains were studied. The main study results are below: 1. Through the study of enzyme production factor we found that lactoflavin is the necessary factor in strain P1 enzyme production. When we used starch to be carbon energy, lactoflavin is only the necessary factor of enzyme production, but not growth factor. When we used PVA to be carbon energy, lactoflavin was not only the necessary growth factor ,but also the necessary enzyme production factor.So it was the growth factor of strain P1 2. The enzyme production conditions and enzyme production characteristic of symbiotic bacteria B1+B2 were studied. Through the orthogonal experimental design, the main conditions which effected the enzyme production and the optimum conditions of enzyme production were obtained 3. Through the study of the stability of polyvinyl alcohol-degrading enzyme, the main physical and chemical conditions which effected the enzyme stability were 4. The stain P1,symbiotic bacteria B1+B2, stain Pa and strain Pb were selected to form combination bacteria. The stain P1,symbiotic bacteria B1+B2,stain Pa were the optimum combination through duplication experiment. Then the optimum ratio was obtained through orthogonal experiment. 5. Studied the factors which effected the polyvinyl alcohol-degrading enzyme activity, then through orthogonal experiment, the main factors and condition of enzyme production which effected the combination bacteria were achieved. The result of the study was valuable for the ferment of the PVA-degrading enzyme and the optimization of the PVA-degrading performance in the PVA wastewater.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The potential for performing cellulase-catalyzed reactions on cellulose dissolved in 1-butyl-3-methylimidazolium chloride ([bmim] Cl) has been investigated. We have carried out a systematic study on the irreversible solvent and ionic strength-induced inactivation and unfolding of cellulase from Trichoderma reesei ( E.C.#3.2.1.4). Experiments, varying both cellulase and IL solvent concentrations, have indicated that [bmim] Cl, and several other ILs, as well as dimethylacetamide-LiCl (a well-known solvent system for cellulose), inactivate cellulase under these conditions. Despite cellulase inactivity, results obtained from this study led to valuable insights into the requirements necessary for enzyme activity in IL systems. Enzyme stability was determined during urea, NaCl, and [bmim] Cl-induced denaturation observed through fluorescence spectroscopy. Protein stability of a PEG-supported cellulase in [bmim] Cl solution was investigated and increased stability/activity of the PEG-supported cellulase in both the [bmim] Cl and citrate buffer solutions were detected.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have developed expedient and reliable methods to isolate cyclosporin synthetase for in vitro biosynthesis of cyclosporins. We have examined enzyme purification strategies suited to large-scale processing and present a chromatographic sequence that serves as a pilot model for industrial scale preparation of cyclosporin synthetase from cyclosporin producing fungi. A chromatographic sequence consisting of ammonium sulfate precipitation → gel filtration → hydrophobic interaction chromatography → anion exchange chromatography, yielded an electrophoretically homogeneous cyclosporin synthetase preparation (Coomassie G-250 brilliant blue staining). Furthermore, a native polyacrylamide gel electrophoresis system was developed for the isolation of active cyclosporin synthetase enzyme from crude extracts of cyclosporin producing fungi. The environmental factors affecting enzyme stability and the continuity of the in vitro cyclosporin biosynthetic reaction-temperature, pH, and substrate depletion were assessed and manageable conditions have been defined for sustainable cyclosporin biosynthesis with enzyme isolates. Cyclosporin synthetase exhibited an optimal temperature range of 24–29 °C and a pH optimum of 7.6. The native enzyme displayed a pI of 5.7, as determined by isoelectric focusing. The industrial implementation of an in vitro biosynthetic approach could potentially prove useful for the production of important therapeutic cyclosporins which occur as only minor fermentation by-products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have developed expedient and reliable methods to isolate cyclosporin synthetase for in vitro biosynthesis of cyclosporins. We have examined enzyme purification strategies suited to large-scale processing and present a chromatographic sequence that serves as a pilot model for industrial scale preparation of cyclosporin synthetase from cyclosporin producing fungi. A chromatographic sequence consisting of ammonium sulfate precipitation → gel filtration → hydrophobic interaction chromatography → anion exchange chromatography, yielded an electrophoretically homogeneous cyclosporin synthetase preparation (Coomassie G-250 brilliant blue staining). Furthermore, a native polyacrylamide gel electrophoresis system was developed for the isolation of active cyclosporin synthetase enzyme from crude extracts of cyclosporin producing fungi. The environmental factors affecting enzyme stability and the continuity of the in vitro cyclosporin biosynthetic reaction-temperature, pH, and substrate depletion were assessed and manageable conditions have been defined for sustainable cyclosporin biosynthesis with enzyme isolates. Cyclosporin synthetase exhibited an optimal temperature range of 24–29 °C and a pH optimum of 7.6. The native enzyme displayed a pI of 5.7, as determined by isoelectric focusing. The industrial implementation of an in vitro biosynthetic approach could potentially prove useful for the production of important therapeutic cyclosporins which occur as only minor fermentation by-products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pectin lyase (Pl) and polygalacturonase (Pg) production by Thermoascus aurantiacus 179-5 was carried out by means of solid-state determination using orange bagasse and wheat bran as a carbon sources. Pg and Pl had optimum activity at pH 5.0 and 10.5 respectively. Maximal activity of the enzymes were determined at 65 °C. Pg was stable in the acidic to neutral pH range and at 60 °C for 1 h. whereas Pl was stable at acidic pH and at 60 °C for 5 h. © 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The alkalophilic Bacillus circulans D1 was isolated from decayed wood. It produced high levels of extracellular cellulase-free xylanase. The enzyme was thermally stable up to 60°C, with an optimal hydrolysis temperature of 70°C. It was stable over a wide pH range (5.5-10.5), with an optimum pH at 5.5 and 80% of its activity at pH 9.0. This cellulase-free xylanase preparation was used to biobleach kraft pulp. Enzymatic treatment of kraft pulp decreased chlorine dioxide use by 23 and 37% to obtain the same kappa number (κ number) and brightness, respectively. Separation on Sephadex G-50 isolated three fractions with xylanase activity with distinct molecular weights.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lipases are versatile enzymes regarding the range of reactions they catalyse and substrates on which they act. They are as well important as catalyst in organic synthesis. Their immobilization on appropriate supports confer them greater stability besides the possibility of operating in continuous reactors. In order to explore these abilities, the reactions involving hydrolysis of p-nitrophenyl acetate (PNPA) and transesterification of PNPA with n-butanol were chosen. Lipases from two different sources were assayed, namely: microbial (Candida rugosa, CRL, Sigma Type VII) and pancreatic (PPL, Sigma, Type 11). Two immobilization methods were also used, namely: 1) adsorption, using as support the following silica derivatives (150-300μm e 450μ): phenyl, epoxy, amino and without derivation, and 2) covalent binding, using glutaraldehyde as binding agent and silica amino as support. This later method led to better results. Hydrolytic activity was 6.1 U/gsupport for CRL and 0.97U/gsupport for PPL, and of transesterification, 2,8U/gsupport for CRL and 1,9U/gsupport for PPL. Stability of the immobilized enzyme as a function of temperature was evaluated for CRL at 40°C and 50°C and for PPL at 32°C and 40°C. The assays were initially carried out batchwise, both for soluble and immobilized enzymes, aiming to the obtention of parameters for the continues reactor. Lipases immobilized by covalent binding were used in the assays of operacional stability in continuos reactors. For PPL in aqueous medium, at 32°C, and CRL in organic medium at 40°C, both operating continuously, no significant loss of activity was detected along the analysis period of 17 days. In the case of CRL in aqueous medium at 40°C there was a loss of activity around 40% after 18 days. For PPL in organic medium at 40°C the loss was 33% after 20 days. Compairing both sources with each other, very different results were obtained. Higher activitiy was found for CRL, both for hydrolysis and for transesterification reactions, with higher stability in organic medium. PPL showed lower activity as well as higher stability in aqueous medium. The immobilization method by covalent binding showed to be the most appropriate. Immobilized lipases are therefore relatively stable both in aqueous and organic medium.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A strain of Aspergillus giganteus cultivated in a medium with xylan produced two xylanases (xylanase I and II) which were purified to homogeneity. Their molar mass, estimated by SDS-PAGE, were 21 and 24 kDa, respectively. Both enzymes are glycoproteins with 50°C temperature optimum; optimum pH was 6.0-6.5 for xylanase I and 6.0 for xylanase II. At 50°C xylanase I exhibited higher thermostability than xylanase II. Hg2+, Cu 2+ and SDS were strong inhibitors, 1,4-dithiothreitol stimulated the reaction of both enzymes. Both xylanases are xylan-specific; kinetic parameters indicated higher efficiency in the hydrolysis of oat spelts xylan. In hydrolysis of this substrate, xylotriose, xylotetraose and larger xylooligosaccharides were released and hence the enzymes were classified as endoxylanases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seventy-five fungal strains from different groups of basidiomycetes, newly isolated from rotten wood, were screened for pectinolytic activity. Despite the fact that basidiomycetes are scarcely referred to as pectinase producers, the polygalacturonase (PG) activity was detected in 76 % of the strains; 16 % with activity higher than 40 nkat/g, 40 % between 13.3 and 40 nkat/g, and 44 % with activity lower than 13.3 nkat/g. The highest productions were obtained among the fungi from order Aphyllophorales, family Polyporaceae. The characterization of the enzymes from the highest PG producers (Lentinus sp., Gloeophyllum striatum, Pycnoporus sanguineus, Schizophyllum commune) showed optimum temperature for catalytic activity at 60-70°C and two peaks of pH optimum (3.5-4.5 and 8.5-9.5). The enzymes exhibited high pH stability (3.0-11.0) but after incubation at 40°C for 1 h their activity dropped by 18-73 %.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Laccases are glycoprotein polyphenol oxidases which are involved in fungal pathogenicity and they are also useful for biotechnological applications. The ligninolytic ascomycete, Botryosphaeria rhodina, has been studied as producer of exopolysaccharide and PPO-I and PPO-II laccases induced by veratryl alcohol. However, as the induced laccases have not been isolated, the aim of this study was to purify the enzyme and to identify the carbohydrates constituents of the glycosidic moiety. The fungus was cultivated on broth Vogel, 1% glucose and 30.4mM veratryl alcohol during 4.5 days at 28°C/180 rpm. The extracellular fluid showed high carbohydrate concentration and the stability of PPO-I laccase under conditions of refrigeration and freezing at 4°C-18°C over 40 days. The purification was developed by ultrafiltration using a NMWL 100 and 30 kDa membrane, gelfiltration on Sephadex G-100, and ion-exchange chromatography on DEAE-cellulose. The purified laccase was identified as a glycoprotein, weight molecular 113 kDa, consisting of 40% protein and 60% carbohydrate identified by HPAEC-PAD as fucose, galactose, mannose, glucose and glucosamine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A newly-isolated thermophilic strain of the zygomycete fungus Rhizomucor pusillus 13.36 produced highly active dextrinogenic and saccharogenic enzymes. Cassava pulp was a good alternative substrate for amylase production. Dextrinogenic and saccharogenic amylases exhibited optimum activities at a pH of 4.0-4.5 and 5.0 respectively and at a temperature of 75°C. The enzymes were highly thermostable, with no detectable loss of saccharogenic or dextrinogenic activity after 1 h and 6 h at 60°C, respectively. The saccharogenic activity was inhibited by Ca2+ while the dextrinogenic was indifferent to this ion. Both activities were inhibited by Fe2+ and Cu2+ Hydrolysis of soluble starch by the crude enzyme yielded 66% glucose, 19.5% maltose, 7.7% maltotriose and 6.6% oligosaccharides. Copyright © 2005, The Microbiological Society of Korea.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermophilic fungus Thermoascus aurantiacus 179-5 produced large quantities of a glucosidase which preferentially hydrolyzed maltose over starch. Enzyme production was high in submerged fermentation, with a maximal activity of 30 U/ml after 336 h of fermentation. In solid-state fermentation, the activity of the enzyme was 22 U/ml at 144 h in medium containing wheat bran and 5.8 U/ml at 48 h when cassava pulp was used as the culture medium. The enzyme was specific for maltose, very slowly hydrolyzed starch, dextrins (2-7G) and the synthetic substrate (α-PNPG), and did not hydrolyze sucrose. These properties suggest that the enzyme is a type II α-glucosidase. The optimum temperature of the enzyme was 70°C. In addition, the enzyme was highly thermostable (100% stability for 10 h at 60°C and a half-life of 15 min at 80°C), and stable within a wide pH range. Copyright © 2006, The Microbiological Society of Korea.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

l-Amino acid oxidases (LAAOs) are flavoenzymes that catalytically deaminate l-amino acids to corresponding α-keto acids with the concomitant production of ammonia (NH 3) and hydrogen peroxide (H 2O 2). Particularly, snake venom LAAOs have been attracted much attention due to their diverse clinical and biological effects, interfering on human coagulation factors and being cytotoxic against some pathogenic bacteria and Leishmania ssp. In this work, a new LAAO from Bothrops jararacussu venom (BjsuLAAO) was purified, functionally characterized and its structure determined by X-ray crystallography at 3.1å resolution. BjsuLAAO showed high catalytic specificity for aromatic and aliphatic large side-chain amino acids. Comparative structural analysis with prokaryotic LAAOs, which exhibit low specificity, indicates the importance of the active-site volume in modulating enzyme selectivity. Surprisingly, the flavin adenine dinucleotide (FAD) cofactor was found in a different orientation canonically described for both prokaryotic and eukaryotic LAAOs. In this new conformational state, the adenosyl group is flipped towards the 62-71 loop, being stabilized by several hydrogen-bond interactions, which is equally stable to the classical binding mode. © 2012 Elsevier Inc.